首页 | 本学科首页   官方微博 | 高级检索  
     


Quantifying temperature and flow rate effects on the performance of a fixed-bed chromatographic reactor
Authors:Vu Tien D  Seidel-Morgenstern A
Affiliation:Hanoi University of Science and Technology, School of Chemical Engineering, 1 Dai Co Viet, Hanoi, Viet Nam.
Abstract:Chromatographic reactors are based on coupling chemical reactions with chromatographic separation in fixed-beds. Temperature and flow rate are important parameters for the performance of such reactors. Temperature affects mainly adsorption, chemical equilibria, mass transfer and reaction kinetics, whereas flow rate influences residence time and dispersion. In order to evaluate the mentioned effects, the hydrolysis reactions of methyl formate (MF) and methyl acetate (MA) were chosen as case studies. These reactions were performed experimentally in a lab-scale fixed-bed chromatographic reactor packed with a strong acidic ion exchange resin. The chosen reactions can be considered to represent a relative fast (MF) and a relative slow (MA) reaction. The processes which take place inside the reactor were described and simulated using an isothermal equilibrium dispersive model. The essential model parameters were determined experimentally at different temperatures and flow rates. The performance of the chromatographic reactor was evaluated at several discrete constant temperature levels by quantifying product purity, productivity and yield. The work provides insight regarding the influence of temperature and flow rate on values of the model parameters and the performance criteria.
Keywords:Chromatographic reactor   Temperature effects   Flow rate effects   Ester hydrolysis   Adsorption isotherms   Reaction kinetics   Productivity   Purity
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号