首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A new mechanism for methane production from methyl-coenzyme M reductase as derived from density functional calculations
Authors:Duin Evert C  McKee Michael L
Institution:Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, USA.
Abstract:We propose a new DFT-based mechanism for methane production using the full F430 cofactor of MCR (methyl-coenzyme M reductase) along with a coordinated O=CH2CH2C(H)NH2C(H)O (surrogate for glutamine) as a model of the active site for conversion of CH3SCoM(-) (CH3SCH2CH2SO3(-)) + HSCoB to methane plus the corresponding heterodisulfide. The cycle begins with the protonation of F430, either on Ni or on the C-ring nitrogen of the tetrapyrrole ring, both of which are nearly equally favorable. The C-ring protonated form is predicted to oxidatively add CH3SCoM(-) to give a 4-coordinate Ni center where the Ni moves out of the plane of the four ring nitrogens. The movement of Ni (and the attached CH3 and SCH2CH2SO3(2-) ligands) toward the SCoB(-) (deprotonated HSCoB) cofactor allows a 2c-3e interaction to form between the two sulfur atoms. The release of the heterodisulfide yields a Ni(III) center with a methyl group attached. The concerted elimination of methane, where the methyl group coordinated to Ni abstracts the proton from the C-ring nitrogen, has a very small calculated activation barrier (5.4 kcal/mol). The NPA charge on Ni for the various reaction steps indicates that the oxidation state changes occur largely on the attached ligands.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号