首页 | 本学科首页   官方微博 | 高级检索  
     


Determination of superior surface strains and stresses, and vocal fold contact pressure in a synthetic larynx model using digital image correlation
Authors:Spencer Mychal  Siegmund Thomas  Mongeau Luc
Affiliation:School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907.
Abstract:Stresses and strains within the vocal fold tissue may play a critical role in voice fatigue, in tissue damage and resulting voice disorders, and in tissue healing. In this study, experiments were performed to determine mechanical fields on the superior surface of a self-oscillating physical model of the human vocal folds using a three-dimensional digital image correlation method. Digital images obtained using a high-speed camera together with a mirror system were used to measure displacement fields, from which strains, strain rates, and stresses on the superior surface of the model vocal folds were computed. The dependence of these variables on flow rate was established. A Hertzian impact model was used to estimate the contact pressure on the medial surface from superior surface strains. A tensile stress dominated state was observed on the superior surface, including during collision between the model folds. Collision between the model vocal folds limits the medial-lateral stress levels on the superior surface, in conjunction with compressive stress or contact pressure on the medial surface.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号