首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Theoretical investigation of C56 fullerene isomers and related compounds
Authors:Chen De-Li  Tian Wei Quan  Feng Ji-Kang  Sun Chia-Chung
Institution:State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China.
Abstract:All the 924 classical isomers of fullerene C(56) have been investigated by PM3, and some most stable isomers are refined with HCTH/3-21G and B3LYP6-31G(d) methods. D(2):003 with the least number of adjacent pentagons is predicted to be the most stable isomer at B3LYP/6-31G(d) level, while C(s):022 and C(2):049 possess nearly degenerate energies with relative energies of 0.03 and 3.90 kcal/mol, respectively. However, as to dianionic C(56)(2-) fullerene, C(2v):011 is predicted to be the most stable isomer. Investigations also show that the encapsulation of Ca atom in C(56) fullerene is exothermic and the metallofullerenes Ca@C(56) can be described as Ca(2+)@C(56)(2-). The computed relative stabilities show that the D(2):003 behaves more thermodynamically stable than other isomers in a wide temperature interval, and C(2v):011 should also be an important component. The electronic isomerization of C(56) (C(2v):011) and C(50) (D(5h):002) indicates that this phenomenon might be rather general in fullerenes and causes different properties, thus bringing about new possible applications of fullerenes. The static second-order hyperpolarizabilities of the three most stable isomers are slightly larger than that of C(60).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号