首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Encapsulation Chalcogen Anions in Perfluorinated Silicon Fullerene: X2−@Si20F20 (X=O,S, Se)
Authors:Hong Wang  Lin Wu
Institution:College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
Abstract:The structures and stabilities of cage Si20F20 and its endohedral complexes X2−@Si20F20 (X=O, S, Se) were determined at the B3LYP/6‐31G(d) levels of density functional theory (DFT). It is found that the adiabatic electron affinity (EAad) of host cage Si20F20 (Ih) is higher than that of isolated O atom (4.24 vs. 1.46 eV). This suggests the Si20F20 cage can selectively trap and stabilize the capsulated spherical anions. The calculations predict that X=S and Se are nearly located at the center of the cage, and O dramatically deviates from the center in C3v symmetry. Moreover, the corresponding X2−@Si20F20 complexes have more negative inclusion energies (ΔEinc) and thermodynamic parameters (ΔZ) than X2−@C20F20. The amount of charge that is being transferred from the encapsulated anions to the cage increases with the atomic radius, i.e., from O2− (ca. 45%), S2− (ca. 51%) to Se2− (ca. 59%), and such a novel model of cage may have practical uses as potential and electrical building units of nanoscale materials.
Keywords:endohedral complexes  inclusion energy  adiabatic electron affinity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号