首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The (α, α), (α, α′) and (α, 3He) reactions on 12C at 139 MeV
Authors:SM Smith  G Tibell  AA Cowley  DA Goldberg  HG Pugh  W Reichart  NS Wall
Institution:Mullard Cryomagnetic Laboratory, Clarendon Laboratory, University of Oxford, Oxford, England
Abstract:The nucleus 12C was bombarded with 139 MeV α-particles to study the characteristics of the elastic, inelastic, and (α, 3He) reactions. An optical model analysis of the elastic data yielded a unique family of Woods-Saxon potential parameters with central real well depth V ≈ 108 MeV, and volume integral J4A ≈ 353 MeV · fm3. By comparing the present results with those of other studies above 100 MeV, we find that the real part of the α-nucleus interaction decreases with increasing energy; the fractional decrease with energy is roughly one-half that observed for proton potentials. Using the optical potential parameters derived from the elastic scattering, first-order DWBA calculations with complex first-derivative form factors reproduced the inelastic scattering data to the 4.44 MeV (2+) and 9.64 MeV (3?) states of 12C. For the 0+ state at 7.65 MeV it was necessary to employ a real, second-derivative form factor to fit the data. The deformation lengths βlRm and deformations βl obtained in this and other experiments are summarized and compared. DWBA calculations using microscopic model form factors were also performed for the 2+ and 3? states using the wave functions of Gillet and Vinh Mau. These reproduced the shapes and relative magnitudes of the differential cross sections. We also fit the shape of the 0+ differential cross section using a microscopic form factor which contains a node, which is similar to that occurring in the collective model second-derivative form factor. In the (α, 3He) reaction the differential cross sections to the ground state (12?) and the 3.85 MeV (52+) state in 13C could not be reproduced by zero-range local DWBA stripping calculations; it was necessary to employ finite-range and non-local corrections in the local-energy approximation. This DWBA analysis is notable in that unambiguous optical potentials were available for both entrance and exit channels. The ground state spectroscopic factor is in agreement with the prediction of Cohen and Kurath, while the relative spectroscopic factors agree fairly well with the rather few existing measurements of this kind.
Keywords:Nuclear reactions
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号