首页 | 本学科首页   官方微博 | 高级检索  
     


Voltammetric determination of 4-nitrophenol using a glassy carbon electrode modified with a gold-ZnO-SiO2 nanostructure
Authors:Arash?Jalili?Ghazizadeh,Abbas?Afkhami,Hasan?Bagheri  author-information"  >  author-information__contact u-icon-before"  >  mailto:h.bagheri@gmail.com"   title="  h.bagheri@gmail.com"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:1.Department of Chemical Engineering, Faculty of Engineering, North Tehran Branch,Islamic Azad University,Tehran,Iran;2.Faculty of Chemistry,Bu-Ali Sina University,Hamedan,Iran;3.Chemical Injuries Research Center, Systems Biology and Poisonings Institute,Baqiyatallah University of Medical Sciences,Tehran,Iran
Abstract:A nanostructured material of the type Au-ZnO-SiO2 is described that consists of ZnO and gold nanoparticles (NPs) dispersed into a silica matrix and used to construct a voltammetric sensor for 4-nitrophenol. The AuNPs and ZnO NPs are anchored onto the silica network which warrants the nanostructures to be stable in various environments. It also facilitates the electron transfer between the electrolyte and the glassy carbon electrode (GCE). The properties of the nanostructure as a modifier for the GCE were investigated by energy dispersive spectrometry, X-ray diffraction spectroscopy, and transmission electron microscopy. It is shown that the nanostructure increases the surface area. Hence, the cathodic and anodic current in differential pulse voltammetry of 4-nitrophenol are considerably enhanced in comparison to a bare GCE. Under optimum conditions, the currents for oxidation and reduction are proportional to the concentration of 4-nitrophenol in the 0.05–3.5 μM and 0.01–1.2 μM concentration ranges, with 13.7 and 2.8 nM detection limits, respectively. The sensor has excellent sensitivity, fast response, long-term stability, and good reproducibility. It is perceived to be a valuable tool for monitoring 4-nitrophenol in real water samples.
Graphical abstract Schematic of voltammetric sensor for 4-nitrophenol. It is based on GCE modified with gold-ZnO-SiO2 nanostructure. It exhibited the improvement in performance for both oxidation and reduction peaks in terms of linearity, concentration range, detection limit, and sensitivity.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号