首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An ab initio study of solvent polarity and hydrogen bonding effects on the nitrogen NMR shieldings of N,N‐dimethylacetamidine
Abstract:Density functional theory combined with the polarizable continuum model (PCM) and continuous set of gauge transformations method is applied to investigate the effects of solvent polarity on the nitrogen NMR shieldings of N, N‐dimethylacetamidine. Hydrogen bonding effects on shielding are likewise calculated using a supermolecule approach, where the imino group of the solute is hydrogen bonded with solvent. Theoretical results are compared with published experimental data. The PCM shielding calculations utilizing PCM‐optimized solute geometries yield results comparable to those obtained with the supermolecule approach. Geometry optimization of the solute appears to be more important in PCM shielding calculations than in the supermolecule approach. The large solvent shifts observed in water can only be reproduced when the N·H distance used in the calculation indicates full proton transfer from water to the imino nitrogen of the solute. Copyright © 2002 John Wiley & Sons, Ltd.
Keywords:NMR  15N  nitrogen shieldings  nitrogen chemical shifts  amidines  solvent effects  hydrogen bonding  CSGT  PCM  ab initio calculations
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号