首页 | 本学科首页   官方微博 | 高级检索  
     


Heterogeneity of surface colour centres on alkaline earth metal oxides as revealed through EPR/ENDOR spectroscopy
Abstract:A variety of surface anion vacancies, or point defects, are created by high‐temperature activation of a series of polycrystalline alkaline earth metal oxides (MgO, CaO and SrO). Subsequent UV irradiation of the activated oxide under a hydrogen atmosphere results in the generation of surface colour centres [FS+(H)], by electron trapping at these anion vacancies. The paramagnetic properties of these colour centres were studied by EPR and ENDOR spectroscopy. 1H ENDOR spectroscopy revealed that a well defined heterogeneity of trapped electron species exists on each oxide surface, as characterized by the different superhyperfine couplings between the trapped electron and the nearby proton of the FS+ (H) centre. On MgO and CaO two dominant FS+ (H) centres were identified (labelled sites I and II) whereas on SrO three FS+ (H) species were found (sites I, II and III). The possible surface sites responsible for electron stabilization are discussed, and include a 3C corner mono‐vacancy, a 4C mono‐vacancy and an anion–cation di‐vacancy. The results indicate that regardless of the oxide used, a common degree of morphological similarities exists on each oxide. Copyright © 2002 John Wiley & Sons, Ltd.
Keywords:ESR  ENDOR  1H  oxides  surface  colour centres
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号