首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electronic and magnetic properties of manganese and iron-doped Ga(n)As(n) nanocages (n=7-12)
Authors:Wang Jianguang  Ma Li  Zhao Jijun  Wang Guanghou  Chen Xiaoshuang  Bruce King R
Institution:State Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams, School of Physics and Optoelectronic Technology and College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024, People's Republic of China.
Abstract:The electronic and magnetic properties of Mn- or Fe-doped Ga(n)As(n) (n=7-12) nanocages were studied using gradient-corrected density-functional theory considering doping at substitutional, endohedral, and exohedral sites. When doped with one atom, the most energetically favorable site gradually moves from surface (n=7-11) to interior (n=12) sites for the Mn atom, while the most preferred doping site of the Fe atom alternates between the surface (n=7,9,11) and interior (n=8,10,12) sites. All of the ground-state structures of Mn@Ga(n)As(n) have the atomlike magnetic moment of 5mu(B), while the total magnetic moments of the most stable Fe@Ga(n)As(n) cages for each size are about 2mu(B) except for the 4mu(B) magnetic moment of Fe@Ga(12)As(12). Charge transfer and hybridization between the 4s and 3d states of Mn or Fe and the 4s and 4p states of As were found. The antiferromagnetic (AFM) state of Mn(2)@Ga(n)As(n) is more energetically favorable than the ferromagnetic (FM) state. However, for Fe(2)@Ga(n)As(n) the FM state is more stable than the AFM state. The local magnetic moments of Mn and Fe atoms in the Ga(n)As(n) cages are about 4mu(B) and 3mu(B) in the FM and AFM states, respectively. For both Mn and Fe bidoping, the most energetically favorable doping sites of the transition metal atoms are located on the surface of the Ga(n)As(n) cages. The computed magnetic moments of the doped Fe and Mn atoms agree excellently with the theoretical and experimental values in the Fe(Mn)GaAs interface as well as (Ga, Mn)As dilute magnetic semiconductors.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号