首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Unravelling the intrinsic features of NO binding to iron(II)- and iron(III)-hemes
Authors:Chiavarino Barbara  Crestoni Maria Elisa  Fornarini Simonetta  Rovira Carme
Institution:Dipartimento di Chimica e Tecnologia del Farmaco, Universita di Roma "La Sapienza", P.le A. Moro 5, I-00185 Roma, Italy.
Abstract:Electrospray ionization of appropriate precursors is used to deliver Fe (III)-heme] (+) and Fe (II)-hemeH] (+) ions as naked species in the gas phase where their ion chemistry has been examined by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. In the naked, four-coordinate Fe (II)-hemeH] (+) and Fe (III)-heme] (+) ions, the intrinsic reactivity of iron(II)- and iron(III)-hemes is revealed free from any influence due to axial ligand, counterion, or solvent effects. Ligand (L) addition and ligand transfer equilibria with a series of selected neutrals are attained when Fe (II)-hemeH] (+), corresponding to protonated Fe (II)-heme, is allowed to react in the FT-ICR cell. A Heme Cation Basicity (HCB) ladder for the various ligands toward Fe (II)-hemeH] (+), corresponding to -Delta G degrees for the process Fe (II)-hemeH] (+) + L --> Fe (II)-hemeH(L)] (+) and named HCB (II), can thus be established. The so-obtained HCB (II) values are compared with the corresponding HCB (III) values for Fe (III)-heme] (+). In spite of pronounced differences displayed by various ligands, NO shows a quite similar HCB of about 67 kJ mol (-1) at 300 K toward both ions, estimated to correspond to a binding energy of 124 kJ mol (-1). Density Functional Theory (DFT) computations confirm the experimental results, yielding very similar values of NO binding energies to Fe (II)-hemeH] (+) and Fe (III)-heme] (+), equal to 140 and 144 kJ mol (-1), respectively. The kinetic study of the NO association reaction supports the equilibrium HCB data and reveals that the two species share very close rate constant values both for the forward and for the reverse reaction. These gas phase results diverge markedly from the kinetics and thermodynamic behavior of NO binding to iron(II)- and iron(III)-heme proteins and model complexes in solution. The requisite of either a very labile or a vacant coordination site on iron for a facile addition of NO to occur, suggested to explain the bias for typically five-coordinate iron(II) species in solution, is fully supported by the present work.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号