首页 | 本学科首页   官方微博 | 高级检索  
     


Sorption interactions of volatile organic compounds with organoclays under different humidities by using linear solvation energy relationships
Authors:Yu-Huei Peng  Shih-Min Chou  Yang-Hsin Shih
Affiliation:1. Department of Agricultural Chemistry, National Taiwan University, Taipei, 106, Taiwan
Abstract:Organoclays are usually used as sorbents to reduce the spread of organic compounds and to remove them at contaminated sites. The sorption equilibrium and the mechanisms of volatile organic compounds (VOCs) on organoclays under different humidities are helpful for developing efficient organoclays and for predicting the fate of VOCs in the environment. In this study, the organoclay was synthesized through exchanging inorganic cations by hexadecyltrimethyl ammonium (HDTMA) into montmorillonite, resulting in 12?% of organic content. The surface area of organoclay was smaller than the unmodified clay due to the incorporation of organic cations into the interlayer. Both adsorption on organoclay surface and partition into the incorporated HDTMA in organoclay played roles on the sorption process. Compared the sorption coefficients in montmorillonite and different modified clays, the incorporated organic cations overcame the inhibition effect of hydrophilic surface of clay on the sorption process of hydrophobic organic compounds from water. The sorption coefficients of VOC vapors on organoclay were further characterized using a linear solvation energy relationship (LSER). The fitted LSER equations were obtained by a multiple regression of the sorption coefficients of 22 probe chemicals against their solvation parameters. The coefficients of the five-parameter LSER equations showed that high HDTMA-content montmorillonite interacts with VOC molecules mainly through dispersion, partly through dipolarity/polarizability and hydrogen-bonds as well as with negative π-/n-electron pair interaction. The interaction analysis by LSERs suggests that the potential predominant factors governing the sorption of VOCs are dispersion interactions under all tested humidity conditions, similar with the lower level modified clay. The derived LSER equations successfully fit the sorption coefficients of VOCs on organoclay under different humidity conditions. It is helpful to design better toxic vapor removal strategy and evaluate the fate of organic contaminants in the environment.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号