首页 | 本学科首页   官方微博 | 高级检索  
     


PAMELA,FGST and sub-TeV dark matter
Authors:Dan Hooper  Kathryn M. Zurek
Affiliation:1. Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, IL, United States;2. Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL, United States;3. Department of Physics, University of Michigan, Ann Arbor, MI, United States
Abstract:PAMELA's observation that the cosmic ray positron fraction increases rapidly with energy implies the presence of primary sources of energetic electron–positron pairs. Of particular interest is the possibility that dark matter annihilations in the halo of the Milky Way provide this anomalous flux of antimatter. The recent measurement of the cosmic ray electron spectrum by the Fermi Gamma Ray Space Telescope, however, can be used to constrain the nature of any such dark matter particle. In particular, it has been argued that in order to accommodate the observations of Fermi and provide the PAMELA positron excess, annihilating dark matter particles must be as massive as ∼1 TeV or heavier. In this Letter, we revisit Fermi's electron spectrum measurement within the context of annihilating dark matter, focusing on masses in the range of 100–1000 GeV, and considering effects such as variations in the astrophysical backgrounds from the presence of local cosmic ray accelerators, and the finite energy resolution of the Fermi Gamma Ray Space Telescope. When these factors are taken into account, we find that dark matter particles as light as ∼300 GeV can be capable of generating the positron fraction observed by PAMELA.
Keywords:Dark matter   Cosmic rays
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号