首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sub-100 fs charge transfer in a novel donor-acceptor-donor triad organized in a smectic film
Authors:Roland T  Léonard J  Hernandez Ramirez G  Méry S  Yurchenko O  Ludwigs S  Haacke S
Institution:Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg-CNRS, 67034 Strasbourg Cedex 2, France.
Abstract:Ultrafast transient absorption spectroscopy is performed on a novel donor-acceptor-donor triad made of two identical bisthiophene derivatives as electron donors and a central perylenediimide moiety as electron acceptor. The triad is extended at both ends by covalently bound siloxane chains that confer self-organisation into thin smectic films at ambient temperature. When diluted in chloroform, selective excitation of the donor moiety leads to resonance energy transfer within 130 fs to the acceptor moiety, followed by the formation of a charge transfer (CT) state in ~3 ps. The CT state recombines entirely on a 55 ps time scale. In the liquid crystal films, excitonic intermolecular coupling leads to significant changes in the dynamics. Most remarkably, ultrafast intra- and intermolecular CT state formation occurs in about 60 fs, i.e. on a time scale comparable to electronic coherence times. While the intra-molecular CT states recombine on the same time scale as in solution or even faster, inter-molecular CT states live for about 1 ns. Last, triplet states of the perylenediimide moiety dominate the differential absorption after ~1 ns. We anticipate that the fast recombination of intra-molecular CT states and the triplet state formation may severely limit the photo-current in these materials.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号