首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis of TiO2 nanocoral structures in ever-changing aqueous reaction systems
Authors:Soejima Tetsuro  Jin Ren-Hua  Terayama Yuki  Takahara Atsushi  Shiraishi Takamasa  Ito Seishiro  Kimizuka Nobuo
Institution:Department of Applied Chemistry, School of Science and Engineering, Kinki University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan.
Abstract:A far-from-equilibrium strategy is developed to synthesize coral-like nanostructures of TiO(2) on a variety of surfaces. TiO(2) nanocoral structures consist of anatase base film and rutile nanowire layers, and they are continuously formed on substrates immersed in aqueous TiOSO(4)-H(2)O(2). The sequential deposition of TiO(2) starts with hydrolysis and condensation reactions of titanium peroxocomplexes in the aqueous phase, resulting in deposition of amorphous film. The film serves as adhesive interface on which succeeding growth of rutile nanowires to occur. This initial deposition reaction is accompanied by shift in pH of the reaction media, which is favorable condition for the growth of rutile nanocrystals. During the growth of rutile nanocoral layers, the amorphous base films are transformed to anatase phase. These sequential deposition reactions occur at temperatures as low as 80 °C, and the mild synthetic condition allows the use of a wide range of substrates such as ITO (indium tin oxide), glass, and even organic polymer films. The thickness of nanocoral layer is controllable by repeating the growth reaction of rutile nanocorals. TiO(2) nanocorals show photocatalytic activity as demonstrated by site-specific reduction of Ag(I) ions, which proceeds preferentially on the rutile nanowire layer. The rutile nanowire layer also shows photocatalytic decomposition of acetaldehyde, which is promoted upon increase of the thickness of the nanowire layer. The use of temporally transforming reaction media allows the formation of biphasic TiO(2) nanocoral structures, and the concept of nonequilibrium synthetic approach would be widely applicable to developing structurally graded inorganic nanointerfaces.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号