首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamic covalent polypeptides showing tunable secondary structures and thermoresponsiveness
Authors:Jiatao Yan  Kun Liu  Xiuqiang Zhang  Wen Li  Afang Zhang
Institution:Laboratory of Polymer Chemistry, Department of Polymer Materials, College of Materials Science and Engineering, Shanghai University, Shanghai, China
Abstract:Lysine‐based polypeptides can be afforded with steerable secondary structures and tunable thermoresponsiveness through dynamic covalent OEGylation. These polypeptides were formed through dynamic imine linkage via reactions of amino moieties from poly(l ‐lysine)s with aldehydes from oligoethylene glycol (OEG)‐based dendrons. In addition to solution concentrations and pH values, macromolecular effect was found to play an important role on the imine formation. OEGylated polypeptides showed characteristic thermoresponsive properties, and their phase transition temperatures were governed predominately by terminal groups and the coverage of OEG dendrons. Notably, thermally induced aggregation would enhance the imine formation even at elevated temperature. In contrast to the covalent polypeptide representatives, the dynamic covalent polypeptides conveyed different thermoresponsiveness due to imine linkages, and their phase transition temperatures could be tuned simply by varying ratios of OEG dendrons with different hydrophilicity. Furthermore, helical conformation of these polypeptides was enhanced with attachment of OEG dendrons, and could be reversibly switched through thermally induced aggregation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 33–41
Keywords:dendrimers  dynamic covalent chemistry  helical conformation  peptides  secondary structures  stimuli‐sensitive polymers
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号