Minimization of the auxiliary reagent loading for direct arylation polymerization (DArP) of 2‐bromo‐3‐hexylthiophene |
| |
Authors: | Andrey E. Rudenko Alia A. Latif Barry C. Thompson |
| |
Affiliation: | Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California |
| |
Abstract: | In this work, we present a powerful set of synthetic strategies aimed at minimization of auxiliary reagent loading for direct arylation polymerization (DArP) of 2‐bromo‐3‐hexylthiophene. As such, we report efficient lowering of Pd(OAc)2 catalyst loading as well as loading of other auxiliary reagents, such as neodecanoic acid and N,N‐dimethylacetamide. Unprecedented low loadings of catalyst down to 0.0313% (313 ppm) were achieved, while producing polymer in high yield (91% after Soxhlet extraction), with a high molecular weight (24.2 kDa) and carefully controlled chemical structure thus making the optimized DArP protocol significantly more cost‐effective, convenient, sustainable, and environmentally friendly. The resulting polymer samples were thoroughly investigated in terms of their chemical structure as well as optical, thermal, chain ordering and electronic properties using GPC analysis, 1H NMR, MALDI, UV–vis, GIXRD spectroscopy, DSC, and SCLC hole mobility measurements. The results demonstrate that the reagent lowering strategies increase the polymer regioregularity from 94.6 to 96.5% as evidenced by 1H NMR spectra and corroborated by GIXRD, DSC, and UV–vis measurements. Additionally, polymer samples obtained at low reagent loading are more uniformly proton‐terminated as evidenced by 1H NMR and MALDI end‐group analysis. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1492–1499 |
| |
Keywords: | catalysis conjugated polymers direct arylation polymerization low loading poly(3‐hexylthiophene) transition metal chemistry |
|
|