首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the theory underlying the Car-Parrinello method and the role of the fictitious mass parameter
Authors:Tangney Paul
Institution:International School for Advanced Studies, via Beirut 2-4, 34013 Trieste, Italy. pttangney@lbl.gov
Abstract:The theory underlying the Car-Parrinello extended-Lagrangian approach to ab initio molecular dynamics (CPMD) is reviewed and reexamined using "heavy" ice as a test system. It is emphasized that the adiabatic decoupling in CPMD is not a decoupling of electronic orbitals from the ions but only a decoupling of a subset of the orbital vibrational modes from the rest of the necessarily coupled system of orbitals and ions. Recent work J. Chem. Phys. 116, 14 (2002)] has pointed out that, due to the orbital-ion coupling that remains once adiabatic decoupling has been achieved, a large value of the fictitious mass mu can lead to systematic errors in the computed forces in CPMD. These errors are further investigated in the present work with a focus on those parts of these errors that are not corrected simply by rescaling the masses of the ions. It is suggested that any comparison of the efficiencies of Born-Oppenheimer molecular dynamics (BOMD) and CPMD should be performed at a similar level of accuracy. If accuracy is judged according to the average magnitude of the systematic errors in the computed forces, the efficiency of BOMD compares more favorably to that of CPMD than previous comparisons have suggested.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号