Selectivity and stability of organic films at the air-aqueous interface |
| |
Authors: | Gilman J B Eliason T L Fast A Vaida V |
| |
Affiliation: | Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA. |
| |
Abstract: | It has recently been determined that organic compounds represent a significant percentage of the composition of certain atmospheric aerosols. Amphiphilic organics, such as fatty acids and alcohols, partition to the interface of aqueous aerosols. In this way, the air-aqueous interface of an aerosol has the ability to act as both a concentrator and a selector of organic surfactants. Isotherms of nonanoic acid, stearic acid, 1-octadecanol, and a binary of mixture of nonanoic and stearic acids were used to infer the packing ability and molecular orientation of the surfactants at the interface. The selectivity of the air-aqueous interface was studied by monitoring the composition of binary organic films as a function of film exposure time. The films were formed, aged, and collected with the use of a Langmuir trough. The composition of the aged film was determined via GC-MS. Surfactants with differing carbon number and chemical functionalities were studied. These included stearic acid, lauric acid, 1-octadecanol, and octadecane. The stability and packing ability of stearic and lauric acid films were examined as a function of subphase pH. The relevance of these findings as they relate to the composition and structure of organic aerosols as well as recent surface-sensitive aerosol field measurements is discussed. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|