首页 | 本学科首页   官方微博 | 高级检索  
     


Reaction pathways involved in the mechanism of AlIII chelation with caffeic acid: catechol and carboxylic functions competition.
Authors:Christine Lapouge  Jean-Paul Cornard
Affiliation:LASIR, CNRS UMR8516, Department of Chemistry, Université des Sciences et Technologies de Lille, Bat C5-59, 655 Villeneuve d'Ascq, France. Christine.lapouge@univ-lille1.fr
Abstract:Density functional theory calculations on the AlIII-caffeic acid system are carried out to investigate the fixing mechanism of this metal ion to the two competing complexing sites in the ligand. This theoretical study was performed to explain the complex formation of 1:1 stoichiometry observed in aqueous medium at low pH values. Both complexation with the catechol and carboxylic functions are envisaged. The reaction pathways for the formation of these two chelates are calculated at the B3LYP/6-31G** level of theory. The complexation on the more acidic group is relatively straightforward and shows the intermediate formation of a monodentate complex followed by a chelation process. The complexation reaction pathway with the catechol function is more sophisticated, and several pathways are explored. Once more, the formation of a monodentate complex is achieved and the most favorable pathway for chelation involves the successive steps: 1) coordination of AlIII on the oxygen atom of a hydroxyl group, 2) deprotonation of this hydroxyl group, 3) ring closure with the other oxygen atom, and 4) deprotonation of the second hydroxyl. From an energetic point of view, this second pathway is more favorable. Notably the energy barrier necessary to form the chelate is lower for the catechol function than that calculated for the carboxylic group. The results of this purely theoretical study are in complete agreement with spectroscopic investigations performed on this system.
Keywords:aluminium  chelates  density functional calculations  reaction mechanisms  regioselectivity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号