首页 | 本学科首页   官方微博 | 高级检索  
     


The Rayleigh-like collapse of a conical bubble
Authors:Leighton   Cox   Phelps
Affiliation:Institute of Sound and Vibration Research, University of Southampton, United Kingdom.
Abstract:Key to the dynamics of the type of bubble collapse which is associated with such phenomena as sonoluminescence and the emission of strong rebound pressures into the liquid is the role of the liquid inertia. Following the initial formulation of the collapse of an empty spherical cavity, such collapses have been termed "Rayleigh-like." Today this type of cavitation is termed "inertial," reflecting the dominant role of the liquid inertia in the early stages of the collapse. While the inertia in models of spherical bubble collapses depends primarily on the liquid, experimental control of the liquid inertia has not readily been achievable without changing the liquid density and, consequently, changing other liquid properties. In this paper, novel experimental apparatus is described whereby the inertia at the early stages of the collapse of a conical bubble can easily be controlled. The collapse is capable of producing luminescence. The similarity between the collapses of spherical and conical bubbles is investigated analytically, and compared with experimental measurements of the gas pressures generated by the collapse, the bubble wall speeds, and the collapse times.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号