首页 | 本学科首页   官方微博 | 高级检索  
     


Mesoporous titania-alumina mixed oxide: A preliminary study on synthesis and application in selective catalytic reduction of NOx
Authors:H.K. Mishra
Affiliation:CANMET Energy Technology Centre-Ottawa, 1 Haanel Drive, Ottawa K1A 1M1, Canada
Abstract:Titania-alumina mixed oxide was synthesized hydrothermally using tetrapropylammonium hydroxide (TPAOH) as the template. The dried, calcined and palladium loaded samples were characterized for particle morphology, weight loss, nitrogen adsorption/desorption at liquid nitrogen temperature, texture and metal dispersion. The Pd loaded material was tested for NO reduction in a fixed bed catalytic reactor using a simulated gas mixture closely resembling lean burn engine exhaust. Scanning electron microscopy of the dried and calcined samples revealed a well developed tubular fibrous network of titania-alumina. Thermogravimetry (TG) of the dried sample indicated about 16% weight loss due to decomposition of an oxy-hydroxide structure of the material, mostly boehmite, which was confirmed by X-ray diffraction (XRD) measurements. The boehmite phase changed to poorly crystalline γ-alumina upon calcination where as titania remained as anatase. BET specific surface area, adsorption-desorption isotherms and BJH pore size distributions indicated formation of a mesoporous structure. The surface area of the dried material increased when calcined at 600 °C but the pore size distribution patterns for the dried, calcined and palladium dispersed materials remained unchanged. These observations along with TG and XRD analyses suggest that a thermo-resistant, mesoporous, high surface area, crystalline titania-alumina framework can be prepared using the hydrothermal synthesis route. A peak NOx conversion of 75% with the palladium dispersed catalyst indicates high catalytic activity, possibly due to high dispersion of Pd confirmed by CO chemisorption studies.
Keywords:82.65.+r   Surface and interface chemistry   Heterogeneous catalysis at surfaces
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号