On the combined use of scratch tests and CLA profilometry for the characterization of polyester powder coatings: Influence of scratch load and speed |
| |
Authors: | M. Barletta A. Gisario G. Bolelli |
| |
Affiliation: | a Università degli Studi di Roma Tor Vergata, Dipartimento di Ingegneria Meccanica, Via del Politecnico 1, 00133 Roma, Italy b La Sapienza Università degli Studi di Roma, Dipartimento di Meccanica ed Aeronautica, Via Eudossiana 18, 00184 Roma, Italy c Università degli Studi di Modena e Reggio Emilia, Dipartimento di Ingegneria dei Materiali e dell’Ambiente, Via Vignolese 905, 41100 Modena, Italy |
| |
Abstract: | The prediction of the mechanical properties of polyester powder coatings is of paramount importance, as they have to undergo a wide variety of forces and deformations during their service life. Determine the response of polymeric coatings to the actual loading conditions can be, however, very troublesome as their properties are function of the material physical state, rate-dependence and yield and break behaviour. Further, the characterization of soft, contaminated organic surfaces such as polymers can often cause severe problems with reliability and imaging accuracy due to instrumental artefacts.This is therefore the context in which this paper investigates the capability of multiple parameters scratch tests joined with non-contact CLA profilometry and FE-SEM to detect the scratch response of polyester powder coatings for protective and decorative outdoor applications. Scratch tests with blunt contact geometry were used to evaluate the response of polyester coatings baked at different time-temperature programs and, so, at different stages of their curing process. In particular, being such coatings highly non-linear in their response to mechanical stress or strain, the influence from scratch load and speed was carefully taken into account. Analytical evaluations of the experimental results led to good correlations between the extent of the deformed zone after scratch, scratch parameters and curing operational settings. This allows mapping the scratch response of the polyester topcoats to broad ranges of both scratch parameters and curing conditions. |
| |
Keywords: | Polyester powder coatings Multiple parameters scratch test Scratch load Scratch speed Deformation response Mapping CLA profilometry FE-SEM |
本文献已被 ScienceDirect 等数据库收录! |
|