首页 | 本学科首页   官方微博 | 高级检索  
     


Structural and dynamic variations in DNA hexamers containing T-T and F-F single and tandem internal mispairs
Authors:Edward C. Sherer  Christopher J. Cramer
Affiliation:(1) Department of Chemistry and Supercomputer Institute, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455-0431, USA
Abstract:Molecular dynamics simulations of double-helical DNA oligomers have been performed to investigate differences in the structure, dynamics, and hydration of F-F and T-T mispairs. Hexamers containing F-F pairs were found to be more dynamic, especially in the region of the mispair itself. This dynamic variability derives from greater flexibility of F-F pairs. The T-T mispairs, on the other hand, were found to be comparatively tightly bound as wobble pairs. The major and minor groove edges of the T-T pairs were observed to be solvated at exposed carbonyl positions by at least one water molecule, while F-F pairs lacked solvating waters. Stacking interactions were nearly identical for T-T and F-F pairs, leading to similar average structures, even though F stacking was more dynamically variable. Solvation differences between F-F and T-T therefore support the steric exclusion model for nucleotide incorporation in DNA replication. Large differences in the orientation of minor groove functional groups, in addition to differences in solvation, further rationalize why F bases present during DNA extension events induce stalls. Two novel nucleotides are proposed to further elucidate minor groove interactions of DNA with polymerase molecules.Electronic Supplementary Material This Material consists of equilibration protocol, plots of center-of-mass stacking, water radial distribution functions, helical parameter dynamics, and dynamics data for a control AT sequence. Supplementary material is available in the online version of this article at Contribution to the Jacopo Tomasi Honorary Issue
Keywords:DNA replication  Nucleotide mispair  Unnatural nucleic acid base  Principal component analysis
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号