首页 | 本学科首页   官方微博 | 高级检索  
     

基于地铁施工事故案例的机器学习灾害预测方法
引用本文:吴成宇,项薇,韩乐琦,何淑波,石钟淼,黄益槐. 基于地铁施工事故案例的机器学习灾害预测方法[J]. 数学的实践与认识, 2022, 0(1): 92-102
作者姓名:吴成宇  项薇  韩乐琦  何淑波  石钟淼  黄益槐
作者单位:1.宁波大学机械工程与力学学院
基金项目:宁波市自然科学基金(202000061)。
摘    要:针对城市轨道交通施工事故的频繁发生,建立了基于地铁施工事故案例的机器学习灾害预测模型.通过收集过往地铁施工事故案例建立数据集,引入天气气象、水文地质、周边环境、施工因素等外部风险源做为特征,分析决策树、随机森林、SVM、XGBoost等灾害预测模型对施工事故的预测能力.结果 表明经过网格搜索后XGBoost的预测效果明...

关 键 词:灾害预测  机器学习  算法比较  XGBoost

Machine Learning Disaster Prediction Method Based on Subway Construction Accident Cases
WU Cheng-yu,XIANG Wei,HAN Le-qi,HE Shu-bo,SHI Zhong-miao,HUANG Yi-huai. Machine Learning Disaster Prediction Method Based on Subway Construction Accident Cases[J]. Mathematics in Practice and Theory, 2022, 0(1): 92-102
Authors:WU Cheng-yu  XIANG Wei  HAN Le-qi  HE Shu-bo  SHI Zhong-miao  HUANG Yi-huai
Affiliation:(Faculty of Mechanical Engineering and Mechanics,Ningbo University,Ningbo 315000,China)
Abstract:Aiming at the frequent occurrence of urban rail transit construction accidents,a machine learning disaster prediction model based on subway construction accident cases has been established Establish a data set by collecting past subway construction accident cases,introducing weather and meteorology,hydrogeology,surrounding environment,construction factors and other external risk sources as features,and analyzing the prediction of construction accidents by disaster prediction models such as decision trees,random forests,SVM,XGBoost,etc.ability.The results show that the prediction effect of XGBoost after grid search is significantly higher than other models.Its macro-average AUC value and micro-average AUC value reach 0.7564 and 0.8624 respectively,which are 0.87% and 12.99%higher than the second-ranked model,respectively.
Keywords:disaster prediction  machine learning  algorithm comparison  XGBoost
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号