首页 | 本学科首页   官方微博 | 高级检索  
     


Thermal decomposition of high-energy density materials at high pressure and temperature
Authors:R. C. Striebich  J. Lawrence  
Affiliation:

a University of Dayton Research Institute (UDRI), KL102, 300 College Park, Dayton, OH 45469-0132, USA

b AFRL/PRTG, Propulsion and Power Directorate, Air Force Research Laboratory, 1790 Loop Road N., Wright-Patterson Air Force Base, OH 45433-7103, USA

Abstract:High-energy density materials (HEDMs) are being investigated for use as propellants in rocket, air-breathing, and combined-cycle applications. These types of materials may be attractive alternatives to conventional propellants because of their high heat of combustion, density, and high strain energy. Because advanced propulsion systems may operate at very high pressure and temperature (>25 atm and temperatures exceeding 500 °C), the thermal decomposition of individual HEDMs is of interest to future fuel system designers. A laboratory-scale flow reactor was used to subject small amounts (approximately 1 ml) of deoxygenated HEDM to controlled conditions of temperature and residence-time-at-temperature at constant pressure (34 atm) in the liquid or supercritical phase. The reactor was 316 stainless steel HPLC tubing. Using an in-line analytical system, as well as off-line chromatographic analysis of products, the thermal stability of the parent material, as well as the thermal fragmentation products of each HEDM was measured. Some of the candidate materials tested (dimethyl-2-azidoethylamine (DAMEZ), quadricyclane, and bicyclopropylidene (BCP)) showed only marginal thermal stability with major decomposition occurring before 400 °C (3 s residence time). Other candidate materials (JP-10, RP-1, RG-1, RJ-6, and RJ-7) showed excellent thermal stability: little decomposition even at 600 °C. Results show the pyrolytic stability of candidate materials relative to each other, and provided insights to the mechanisms of thermal decomposition for specific fuel candidates.
Keywords:Bicyclopropylidene   Quadricyclane   RP-1   Rockets   Missiles   Fuels
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号