首页 | 本学科首页   官方微博 | 高级检索  
     


Chemical shifts in auger electron spectra from silicon in silicon nitride
Authors:P.H Holloway
Affiliation:Sandia Laboratories, Albuquerque, New Mexico 87115, U.S.A.
Abstract:The chemisorption of nitric oxide on (110) nickel has been investigated by Auger electron spectroscopy, LEED and thermal desorption. The NO adsorbed irreversibly at 300 K and a faint (2 × 3) structure was observed. At 500 K this pattern intensified, the nitrogen Auger signal increased and the oxygen signal decreased. This is interpreted as the dissociation of NO which had been bound via nitrogen to the surface. By measuring the rate of the decomposition as a function of temperature the dissociation energy is calculated at 125 kJ mol?1. At ~860 K nitrogen desorbs. The rate of this desorption has been measured by AES and by quantitative thermal desorption. It is shown that the desorption of N2 is first order and that the binding energy is 213 kJ mol?1. The small increase in desorption temperature with increasing coverage is interpreted as due to an attractive interaction between adsorbed molecules of ~14 kJ mol?1 for a monolayer. The (2 × 3) LEED pattern which persists from 500–800 K is shown to be associated with nitrogen only. The same pattern is obtained on a carbon contaminated crystal from which oxygen has desorbed as CO and CO2. The (2 × 3) pattern has spots split along the (0.1) direction as (m, n3) and (m2, n). This is interpreted as domains of (2 × 3) structures separated by boundaries which give phase differences of 3 and π. The split spots coalesce as the nitrogen starts to desorb. A (2 × 1) pattern due to adsorbed oxygen was then observed to 1100 K when the oxygen dissolved in the crystal leaving the nickel (110) pattern.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号