Initial oxidation stages on FeCr(100) and FeCr(110) surfaces |
| |
Authors: | C. Leygraf G. Hultquist |
| |
Affiliation: | 1. Department of Physical Chemistry, The Royal Institute of Technology, S-100 44 Stockholm, Sweden;2. Institute of Metal Research, Drottning Kristinas väg 48, S-114 28 Stockholm, Sweden |
| |
Abstract: | Simultaneous LEED and AES are used to follow early stages of oxidation of monocrystalline FeCr(100) and (110) between 700 and 900 K in the oxygen pressure range 10?9–10?6 Torr. A chromium-rich oxide region at the alloy/oxide interface is observed, which exhibits different surface structures on oxidized FeCr(100) and FeCr(110). The chromium concentration in this initially formed oxide film is found to be enhanced by low oxygen pressures or high temperatures. During further oxidation different behaviours are observed on FeCr(100) and FeCr(110), which are explained by assuming different ion permeabilities through the initial chromium rich oxide regions on the two surface planes. On FeCr(110) surfaces oxidation is initiated on chromium enriched (100) facets at 800 K or below. At 900 K a film consisting of rhombohedral Cr2O3 or (Fe, Cr)2O3 is epitaxially growing with its (001) plane parallel to the alloy (110) face. On FeCr(100) surfaces the chromium rich oxide region next to the substrate is of fcc type. As soon as the diffusion of iron from the alloy to the gas/oxide interface is observable, a spinel type oxide is formed and connected with the location of iron in tetrahedral lattice sites. Closer to the fcc lattice the spinel oxide consists of FeCr2O4 or a solid solution of FeCr2O4 and Fe3O4 whereas next to the gas phase the oxide is pure Fe3O4. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|