首页 | 本学科首页   官方微博 | 高级检索  
     


The kinetics of tobacco pyrolysis
Authors:Richard R. Baker
Affiliation:Group Research and Development Centre, British-American Tobacco Co. Ltd., Regent''s Park Road, Southampton S09 IPE, England
Abstract:When tobacco is pyrolysed under non-isothermal flow conditions in an inert atmosphere, variation of the inert gas or its space velocity has only a minor effect on the profiles of formation rate versus temperature for seven product gases. Thus, mass transfer processes between the tobacco surface and the gas phase are very rapid, and the products are formed at an overall rate which is determined entirely by that of the chemical reactions.The effect of radical chain inhibitors (nitrogen oxides) on the pyrolysis is complex because of the resultant oxidation. Nevertheless, no evidence was found for the occurrence of radical chain reactions in the gas phase. A small proportion (less than 10%) of all the gases monitored are formed by homogeneous decomposition of volatile and semi-volatile intermediate products, in the furnace used.At temperatures above about 600°C the reduction of carbon dioxide to carbon monoxide by the carbonaceous tobacco residue becomes increasingly important. However, when tobacco is pyrolysed in an inert atmosphere, only a small amount of carbon dioxide is produced above 600°C and consequently its reduction to carbon monoxide contributes only a small proportion to the total carbon monoxide formed above that temperature. The rate of the tobacco/carbon dioxide reaction is controlled by chemical kinetic rather than mass transfer effects. Carbon monoxide reacts with tobacco to a small extent.When the tobacco is pyrolysed in an atmosphere containing oxygen (9–21% v/v), some oxidation occurs at 200°C. At 250°C the combustion rate is controlled jointly by both kinetic and mass transfer processes, but mass transfer of oxygen in the gas phase becomes increasingly important as the temperature is increased, and it is dominant above 400°C. About 8% of the total carbon monoxide formed by combustion is lost by its further oxidation.The results imply that inside the combustion coal of a burning cigarette the actual reactions occurring are of secondary importance, the rate of supply of oxygen being the dominant factor in determining the combustion rate and heat generation. In contrast, in the region immediately behind the coal, where a large proportion of the products which enter mainstream smoke are formed by thermal decomposition of tobacco constituents, the chemistry of the tobacco substrate is critical, since the decomposition kinetics are controlled by chemical rather than mass transfer effects. tobacco substrate is critical. In addition, the heat release or absorption due to the pyrolytic reactions occurring behind the coal will depend on the chemical composition of the substrate. Thus, together with the differing thermal properties of the tobacco, the temperature gradient behind the coal should depend on the nature of the tobacco.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号