首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Heat revolution on photophysical properties and electroluminescent performance of Ir(ppy)3-doped bipolar host of oxadiazole derivatives attaching with inert group of tert-butyl moiety
Authors:HongJiao Wang  Chen Liu  BaoXiu Mi  Jie Sang  Xin Li  ZhiQiang Gao
Institution:1. Jiangsu Engineering Centre for Flat-Panel Displays & Solid-state Lighting, College of Materials Science & Engineering, Nanjing University of Posts & Telecommunications, Nanjing, 210046, China
2. Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210046, China
Abstract:Two bipolar materials, 2,5-bis(2-(9H-carbazole-9-yl)phenyl)-1,3,4-oxadiazole (o-CzOXD) and 2,5-bis(2-(3′,6′-di-tert-butyl-9H-carbazole-9-yl)phenyl)-1,3,4-oxadiazole (tBu-o-CzOXD), were synthesized according to reported methods. In parallel study, it was demonstrated that introduction of inert tert-butyl group improved material thermal stability, even though this modification only had a slight influence to the photophysical and electrochemical properties of these materials. A comparative study focusing on effects of heat treatment was carried out on the quartz glass substrates with vacuum deposited films containing one of the bipolar host doped with 6 wt% fac-tris(2-phenylpyridinato-N,C2′)iridium (Ir(ppy)3). Results show that when the two samples were heated, the absorption, emission, and photo images of the host:dopant system changed, with the o-CzOXD suffering more severe degradation under high temperature, which is consistent with their thermal stability. In addition, it was proved that the high temperature-annealed host:dopant system can enhance the emission of the dopant. This finding was used as a guideline to improve our device performance. We fabricated two types of phosphorescent organic light-emitting devices (PhOLEDs), one was based on o-CzOXD, the other was based on tBu-o-CzOXD. They had analogous structure. We investigated the effect of heat on device performance by selectively annealing. Although these two freshly prepared devices exhibited similar performance, when annealed at 90 °C for 10 minutes, the OLEDs based on tBu-o-CzOXD showed significant performance enhancement, which can be attributed to the observation that annealing Ir(ppy)3 doped host can change film morphology and enhance the dopant emission. The maximum efficiencies of the freshly prepared tBu-o-CzOXD device were 25.8 cd A?1, 23.1 lm W?1, and 9.3%; whereas those for annealed device were 47.0 cd A?1, 42.2 lm W?1, and 13.4%.
Keywords:OLED  bipolar host  emitting layer  thermal stability  inert group  tert-butyl moiety
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号