首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The physics of space charge instabilities and temporal chaos in extrinsic photoconductors
Authors:S W Teitsworth
Institution:(1) Division of Applied Sciences, Harvard University, 02138 Cambridge, MA, USA
Abstract:This paper reviews experimental and theoretical work carried out on space charge instabilities and temporal chaotic behavior in cooled extrinsic p-type Germanium photoconductors. Measured dc current-voltage (I–V) characteristics of these devices are strongly nonlinear for moderate electric fields gE0.1 V/cm due to field dependence of the rates of free hole capture and impurity impact ionization. Below the threshold field for impurity breakdown, Ge samples behave like damped nonlinear oscillators, exhibiting characteristic chaotic response when driven by a time-periodic voltage. Above impurity breakdown, we observe voltage-controlled negative differential resistance (NDR) in the I–V curves accompanied by spontaneous current oscillations due to moving space charge domains with velocities 103 to 104 cm/s. Measurements are well explained by a simple rate equation model in which negative differential behavior in the impact ionization rate plays a crucial role. Related work on semiconductor chaos and possible future directions for research are also mentioned.
Keywords:5  45  +b  72  20    i
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号