首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Study on energy dependence of PAGAT polymer gel dosimeter evaluated using X-Ray CT
Authors:P Sellakumar  E James Jebaseelan Samuel
Institution:1. Dept. Radiation Oncology, Bangalore Institute of Oncology, 44-45/2, II Cross, RRMR Extension, Bangalore, Karnataka 560 027, India;2. School of Advanced Sciences, VIT University, Vellore - 632 014, India
Abstract:The normoxic polymer gel dosimeter evaluated with X-Ray computed tomography has emerged as a promising tool for measuring the dose delivered during radiotherapy in three dimensions. This study presents the dependence of PAGAT normoxic polymer gel sensitivity to different photon and electron energies. PAGAT polymer gel was prepared under normal atmospheric condition and irradiated with different photon energies of 1.25 MeV from Co-60 and 6 MV and 15 MV from linear accelerator and electron energies of 6, 9, 12, 15, 18 and 21 MeV from linear accelerator. Evaluation of dosimeter was performed with an X-Ray CT scanner. Images were acquired with optimum scanning protocols to reduce the signal-to-noise ratio. The averaged image was subtracted from the unirradiated polymer gel image for background. Central axis depth dose (PDD) curves obtained for each energy and polymer gel dosimeter measurements were in good agreement with diode and film measurements. Hounsfield (HU) – dose response curve for each photon and electron energy were derived from the PDD curve obtained from the gel dosimeter measurements. From the study it was clear that the HU-dose response curve was linear in the region 1–10 Gy. The dosimeter sensitivity was defined as a slope of these linear HU-dose response curves and found that the sensitivity of polymer gel decreases with increase in both photon and electron energies. This trend in dependence of PAGAT gel dosimeter sensitivity to different photon and electron energies was not dosimetrically significant. However, to evaluate the test phantom exposed with one energy using the calibration curve derived at another energy can produce clinically significant error.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号