首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fundamental aspects of activated nanocrystal luminescence and possible applications
Authors:YuV Malyukin
Institution:Department of Nanocrystalline Materials, Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Lenin ave., 61001 Kharkov, Ukraine
Abstract:Presented results of complex study of relaxation processes and interionic interaction in Y2SiO5:Pr3+ and Lu2SiO5:Ce3+ nanocrystals clearly show two fundamental aspects: the phonon quantum confinement gives rise to the new fluorescence dynamics of doped ions; the developed surface of nanocrystals stimulates the irregular distribution of doped ions within the nanocrystal volume and could be the reason of new atomic arrangement of nanocrystal. Fluorescence spectrum of isolated Y2SiO5:Pr3+nanocrystal demonstrates the intense fluorescence from the high crystal field components of split 1D2 manifold of Pr3+ as the result of a suppression of phonon-assisted relaxation under the phonon quantum confinement. The direct comparison of the data obtained for nano- and bulk Y2SiO5:Pr3+ crystals has revealed that the concentration threshold of luminescence quenching is strikingly low for nanocrystals. This effect is caused by uphill diffusion of doped ions and preferred Pr segregation at the nanocrystal surface layer that provides the relaxation of elastic tension arising due to the difference of ionic radii of Pr3+ and Y3+. Lu2SiO5:Ce3+ nanocrystals which average size is 5 nm do not demonstrate the effect of energy storage as the result of atomic packing changing that does not permit the existence of electronic traps.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号