首页 | 本学科首页   官方微博 | 高级检索  
     


One color contrast enhanced infrared and visible image fusion method
Authors:Songfeng Yin  Liangcai Cao  Yongshun Ling  Guofan Jin
Affiliation:1. School of Automation, China University of Geosciences, Wuhan 430074, China;2. Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan 430074, China;3. School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China;4. Electronic Information School, Wuhan University, Wuhan 430072, China
Abstract:Color constancy (Toet and Franken, 2003 [2]; Toet, 2003 [7]) and color contrast (Scribner et al., 2000 [21]; Lee et al., 2005 [23]) are two important topics for color image fusion. The paper focuses on the low color contrast problem of linear fusion algorithms with color transfer method. Color transfer technology is popular in infrared (IR) and visible image fusion to give the fused image a natural day-time color appearance (Toet, 2003 [7]; Wang et al., 2007 [8]; Zheng and Essock, 2008 [9]). However, in the color transfer step, all three channels of the color space are processed with the same linear mapping without color enhancement, resulting in low color contrast between the target and the background (Wang et al., 2007 [8]). Based on the characteristics of the IR image, we introduce a ratio of local to global divergence of the IR image to improve the color contrast. The enhancement ratios for both hot and cold targets are larger than one, while it tends to one for the background. As a result, the proposed method pops out both hot and cold targets in color, where hot targets will appear intense red, and cold targets will appear cyan. Subjective results show visible color contrast enhancement effects. Target detection experiments through hue and saturation components of the fused image show an improvement in the hit rate for target detection, owing to larger color distance between the target and the background.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号