首页 | 本学科首页   官方微博 | 高级检索  
     

基于PCA-GM-BP神经网络的猪肉价格预测分析
引用本文:李阳,王晓光. 基于PCA-GM-BP神经网络的猪肉价格预测分析[J]. 数学的实践与认识, 2021, 0(5): 56-63
作者姓名:李阳  王晓光
作者单位:长春科技学院商学院
基金项目:吉林省教育厅“十三五”科学技术项目(JJKH20191241KJ)。
摘    要:针对猪肉价格上下波动呈非线性关系和影响因素复杂等难以预测的问题,提出了基于PCA-GM-BP神经网络预测模型对猪肉价格进行有效预测.以2010年1月-2018年12月的月度价格数据作为样本,共计108组数据,利用PCA对影响猪肉价格变化的12种因素进行降维处理,选用对猪肉价格的主要累积贡献率超过96%的5个主成分,构建...

关 键 词:猪肉价格  主成分分析  灰色理论  神经网络  影响因素  预测分析

Analysis of Pork Price Prediction Based on PCA-GM-BP Neural Network
LI Yang,WANG Xiao-guang. Analysis of Pork Price Prediction Based on PCA-GM-BP Neural Network[J]. Mathematics in Practice and Theory, 2021, 0(5): 56-63
Authors:LI Yang  WANG Xiao-guang
Affiliation:(Business Administration,Changchun Sci-Tech University,Changchun 130012,China)
Abstract:Aiming at the unpredictable problems such as the non-linear relationship between the up and down fluctuations of pork prices and the complex influencing factors,this article proposes an effective prediction of pork prices based on the PCA-GM-BP neural network prediction model.Taking monthly price data from January 2010 to December 2018 as a sample,a total of 108 sets of data,using PCA to reduce the dimensionality of 12 factors that affect pork price changes,and selecting the main cumulative contribution rate of pork prices to exceed 96% Based on the five principal components,the PCA-GM-BP neural network pork price prediction model was constructed.The results show that:Compared with the traditional BP neural network and GM-BP neural network prediction model,the PCA-GM-BP neural network prediction model improves the clustering effect while increasing the accuracy of the prediction results,which can predict pork prices in China.It has higher applicability and reference value.
Keywords:pork price  principal component analysis  grey theory  neural network  influencing factors  predictive analysis
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号