首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Direct electrochemistry of hemoglobin and myoglobin at didodecyldimethylammonium bromide-modified powder microelectrode and application for electrochemical detection of nitric oxide
Authors:Guo Zhimou  Chen Jian  Liu Huan  Cha Chuansin
Institution:a Laboratory of Electrochemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
b Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
Abstract:Hemoglobin (Hb) and myoglobin (Mb) were immobilized at the didodecyldimethylammonium bromide (DDAB)-modified powder microelectrode (PME) to fabricate Hb-DDAB-PME and Mb-DDAB-PME. Direct electrochemistry of Hb and Mb were achieved on the DDAB-modified PME. The formal potential was −0.224 V for Hb and −0.212 V for Mb (vs. SCE). The apparent surface concentration of Hb and Mb at the electrode surface was 2.83 × 10−8 and 9.94 × 10−8 mol cm−2. The Hb-DDAB-PME and Mb-DDAB-PME were successfully applied for measurement of NO in vitro. The anodic current peaks for NO oxidation at +0.7 V and the cathodic current peaks for NO reduction at −0.85 V on the CV curves were obtained on the modified electrodes. For detection of NO at +0.7 V, the sensitivity is 3.31 mA μM−1 cm−2 for Hb-DDAB-PME and 0.6 mA μM−1 cm−2 for Mb-DDAB-PME. The detection limit is 5 nM for Hb-DDAB-PME and 9 nM for Mb-DDAB-PME. The linear response range is 9-100 and 28-330 nM for Hb- and Mb-modified PME, respectively. For the electrochemical detection of NO at −0.85 V by using Hb-DDAB-PME, the detection sensitivity is 39.56 μA μM−1 cm−2; the detection limit is as low as 0.2 μM; and the linear response range is 1.90-28.08 μM.
Keywords:Hemoglobin  Myoglobin  Direct electrochemistry  Powder microelectrode  Nitric oxide
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号