首页 | 本学科首页   官方微博 | 高级检索  
     


Design of molecular imprinted polymers compatible with aqueous environment
Authors:Piletska Elena V  Guerreiro Antonio R  Romero-Guerra Maria  Chianella Iva  Turner Anthony P F  Piletsky Sergey A
Affiliation:Cranfield Health, Cranfield University, Silsoe, Bedfordshire MK45 4DT, UK
Abstract:The main problem of poor water compatibility of molecularly imprinted polymers (MIPs) was addressed in examples describing design of synthetic receptors with high affinity for drugs of abuse. An extensive potentiometric titration of 10 popular functional monomers and corresponding imprinted and Blank polymers was conducted in order to evaluate the subtleties of functional groups ionisation under aqueous conditions. It was found that polymers prepared using 2-trifluoromethacrylic acid (TFMAA) in combination with toluene as porogen possess superior properties which make them suitable for effective template recognition in water. The potential impact of phase separation during polymerisation on formation of high quality imprints has been discussed. Three drugs of abuse such as cocaine, deoxyephedrine and methadone were used as template models in polymer preparation for the practical validation of obtained results. The polymer testing showed that synthesized molecularly imprinted polymers have high affinity and selectivity for corresponding templates in aqueous environment, with imprinting factors of 2.6 for cocaine and 1.4 for methadone and deoxyephedrine. Corresponding Blank polymers were unable to differentiate between analytes, suggesting that imprinting phenomenon was responsible for the recognition properties.
Keywords:Potentiometric titration   Cocaine   Deoxyephedrine   Methadone   Molecular imprinting
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号