首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Molecular dynamics simulation study on stabilities and reactivities of NADH cytochrome B5 reductase
Authors:Asada Toshio  Nagase Shigeru  Nishimoto Kichisuke  Koseki Shiro
Institution:Department of Chemistry, Faculty of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan. asada@c.s.osakafu-u.ac.jp
Abstract:Binding free energies between coenzyme (FAD and NADH) and the apoenzyme of NADH-cytochrome b5 reductase (b5R) were estimated by applying the continuum Poisson-Boltzmann (PB) model to structures sampled from molecular dynamics simulations in explicit water molecules. Important residues for the enzymatic catalysis were clarified using a computational alanine scanning method. The binding free energies calculated by applying an alanine scanning method can successfully reproduce the trends of the measured steady-state enzymatic activities kcatNADH/KmNADH. Significant decreases in the binding free energy are expected when one of the four residues Arg91, Lys110, Ser127, and Thr181 is mutated into Ala. According to the results of the molecular dynamics simulation, Thr181 is considered to be one of the key residues that helps NADH to approach the isoalloxazine in FAD. Finally, we have constructed very simplified model systems and carried out density functional theory calculations using B3LYP/LANL2DZ//ROHF(or RHF)/LANL2DZ level of theory in order to elucidate a realistic and feasible mechanism of the hydride-ion transfer from NADH to FAD affected by HEME(Fe3+) as an electron acceptor. Our calculated results suggest that the electron and/or hydride-ion transfer reaction from NADH to FAD can be accelerated in the presence of HEME(Fe3+).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号