首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Cotton-Mouton effect of neon and argon: a benchmark study using highly correlated coupled cluster wave functions
Authors:Rizzo Antonio  Kállay Mihály  Gauss Jürgen  Pawłowski Filip  Jørgensen Poul  Hättig Christof
Institution:Istituto per i Processi Chimico-Fisici del Consiglio Nazionale delle Ricerche, Area della Ricerca, via G. Moruzzi 1, loc. S. Cataldo, I-56124 Pisa, Italy.
Abstract:The Cotton-Mouton effect (magnetic field induced linear birefringence) has been studied for neon and argon using state-of-the-art coupled cluster techniques. The coupled cluster singles, doubles and triples (CCSDT) approach has been used to obtain static benchmark results and the CC3 model with an approximate treatment of triple excitations to obtain frequency-dependent results. In the case of neon the effect of excitations beyond triples has also been estimated via coupled cluster calculations including quadruple excitations (CCSDTQ), pentuple excitations (CCSDTQP), etc. up to the full configuration-interaction level. The results obtained for the anisotropy of the hypermagnetizability Deltaeta(omega), the molecular property that determines the magnetic field induced birefringence of spherically symmetric systems, are Deltaeta=2.89 a.u. for neon and Deltaeta=24.7 a.u. for argon, with a negligible effect of frequency dispersion. For neon we could estimate an absolute error on Deltaeta of 0.1 a.u. The accuracy of these results surpasses that of recently reported experimental data.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号