首页 | 本学科首页   官方微博 | 高级检索  
     


Neural networks for solving second-order cone constrained variational inequality problem
Authors:Juhe Sun  Jein-Shan Chen  Chun-Hsu Ko
Affiliation:1. School of Science, Shenyang Aerospace University, Shenyang, 110136, China
2. Department of Mathematics, National Taiwan Normal University, Taipei, 11677, Taiwan
3. Department of Electrical Engineering, I-Shou University, Kaohsiung, 840, Taiwan
Abstract:In this paper, we consider using the neural networks to efficiently solve the second-order cone constrained variational inequality (SOCCVI) problem. More specifically, two kinds of neural networks are proposed to deal with the Karush-Kuhn-Tucker (KKT) conditions of the SOCCVI problem. The first neural network uses the Fischer-Burmeister (FB) function to achieve an unconstrained minimization which is a merit function of the Karush-Kuhn-Tucker equation. We show that the merit function is a Lyapunov function and this neural network is asymptotically stable. The second neural network is introduced for solving a projection formulation whose solutions coincide with the KKT triples of SOCCVI problem. Its Lyapunov stability and global convergence are proved under some conditions. Simulations are provided to show effectiveness of the proposed neural networks.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号