首页 | 本学科首页   官方微博 | 高级检索  
     


A representation of bivariate extreme value distributions via norms on mathbb{R}^{2}
Authors:Michael Falk
Affiliation:(1) Institute of Mathematics, University of Würzburg, D-97074 Würzburg, Germany
Abstract:It is known that a bivariate extreme value distribution (EVD) $$G$$ with reverse exponential margins can be represented as $$G(x,y)=exp(-||(x,y)||)$$, $$x,yle 0$$, where $$||cdot||$$ is a suitable norm on $$mathbb{R}^2$$. We prove in this paper the converse implication, i.e., given an arbitrary norm $$||cdot||$$ on $$mathbb{R}^2$$, $$G(x,y):=exp(-||(x,y)||)$$, $$x,yle 0$$, defines an EVD with reverse exponential margins, if and only if the norm satisfies for $$zin[0,1]$$ the condition $$max(z,1-z)le ||(z,1-z)||le 1$$. This result is extended to bivariate EVDs with arbitrary margins as well as to extreme value copulas. By identifying an EVD $$G(x,y)=exp(-||(x,y)||)$$, $$x,yle 0$$, with the unit ball corresponding to the generating norm $$||cdot||$$, we obtain a characterization of the class of EVDs $$G$$ in terms of compact and convex subsets of $$mathbb{R}^2$$.
Keywords:Bivariate extreme value distribution  Pickands dependence function  Norm  Extreme value copula  Convex set
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号