首页 | 本学科首页   官方微博 | 高级检索  
     


Sub part-per-million mass accuracy by using stepwise-external calibration in fourier transform ion cyclotron resonance mass spectrometry
Authors:Richard L. Wong  I. Jonathan Amster
Affiliation:Department of Chemistry, University of Georgia, Athens, Georgia 30602-2556, USA.
Abstract:A new external calibration procedure for FT-ICR mass spectrometry is presented, stepwise-external calibration. This method is demonstrated for MALDI analysis of peptide mixtures, but is applicable to any ionization method. For this procedure, the masses of analyte peaks are first accurately measured at a low trapping potential (0.63 V) using external calibration. These accurately determined (< 1 ppm accuracy) analyte peaks are used as internal calibrant points for a second mass spectrum that is acquired for the same sample at a higher trapping potential (1.0 V). The second mass spectrum has a approximately 10-fold improvement in detection dynamic range compared with the first spectrum acquired at a low trapping potential. A calibration equation that accounts for local and global space charge is shown to provide mass accuracy with external calibration that is nearly identical to that of internal calibration, without the drawbacks of experimental complexity or reduction of abundance dynamic range. For the 609 mass peaks measured using stepwise-external calibration method, the root-mean-square error is 0.9 ppm. The errors appear to have a Gaussian distribution; 99.3% of the mass errors are shown to lie within three times the sample standard deviation (2.6 ppm) of their true value.
Keywords:
本文献已被 ScienceDirect PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号