首页 | 本学科首页   官方微博 | 高级检索  
     


Sonochemical synthesis and characterization of Cu2HgI4 nanostructures photocatalyst with enhanced visible light photocatalytic ability
Affiliation:1. Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box. 87317-51167, Islamic Republic of Iran;2. Department of Chemistry, College of Science, University of Raparin, Rania, Kurdistan Region, Iraq
Abstract:These days, an important concern in water contamination is the remaining dyes from various sources (for instance, dye and dye intermediates industries, pulp and paper industries, textile industries, craft bleaching industries, tannery, and pharmaceutical industries, etc.), and a broad range of persistent organic contamination has been entered to the wastewater treatment systems or natural water supplies. Indeed, it is extremely hazardous and toxic to the living organism. Therefore, it is necessary to remove these organic pollutants before releasing them into the environment. Photocatalysis is a quickly growing technology for sewage procedures. For this purpose, Cu2HgI4 nanostructures were prepared via facile, and cost-effective sonochemical method. The effect of varied circumstances, such as various surfactants, sonication power, and sonication time was considered on the crystallinity, structure, shape, and particle size of products. Cu2HgI4 possesses a suitable bandgap (2.2 eV) in the visible area. The photocatalytic performance of the Cu2HgI4 was surveyed for the elimination of various organic dyes under visible radiation and exposed that this compound could degrade and remove methyl orange about 94.2% in an acidic medium after 160 min under visible light. Besides, the result showed that various parameters, including, pH, dye concentration, types of dyes, catalyst dosages, and time of irradiation affected the photocatalytic efficiency.
Keywords:Visible-light-driven  Thermochromic materials  Copper mercury iodide  Superionic conductors  Sonochemical pathway
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号