首页 | 本学科首页   官方微博 | 高级检索  
     


Multi-parameter screening study on the static properties of nanoparticle-stabilized CO2 foam near the CO2 critical point
Affiliation:1. Geo-Energy Research Institute, College of Electromechanical Engineering, Qingdao University of Science and Technology, Gaomi 261550, China;2. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
Abstract:The important role of nanoparticles (NPs) on foam stabilization under harsh geological conditions has been well recognized. In this paper, the Orthogonal Experimental Design (OED) method is adopted to investigate the synergy effects of six parameters, including NP concentration, surfactant concentration, oil concentration, salinity, temperature, and pressure, under five levels in the range of 0–0.2 wt%, 0.1–0.5 wt%, 0–4 wt%, 0–8 wt%, 20–60 °C, and 5.5–9.5 MPa respectively. K values and B values obtained in the OED experiments are employed to show the single parameter effect and the importance of each influential factor on foam static properties. It is concluded that system temperature and pressure, which has the highest B values of 22 mm and 18 mm on foam height results, are the dominant parameters on foamability, whereas temperature with B values of 80% on foam decay rate is the dominant factor on foam stability. It is observed when the system condition is close to the CO2 critical point, the foamability and stability of the NP-stabilized foam are much worse than under conditions far from the critical point. At last, optimal formulation of surfactant and NP concentration is proposed and validated for two geological cases of 45 °C and 55 °C with salinity and oil presence. It is expected the experimental technique, as well as the research results, reported in this paper could help the laboratory screening and formulation optimization of the complex NP-stabilized ScCO2 foam system.
Keywords:Multiple parameters  Screen study  Foam static properties
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号