首页 | 本学科首页   官方微博 | 高级检索  
     


Non-crossing quantile regression via doubly penalized kernel machine
Authors:Jooyong Shim  Changha Hwang  Kyung Ha Seok
Affiliation:(1) Department of Applied Statistics, Catholic University of Daegu, Kyungbuk, 702-701, Korea;(2) Department of Statistics, Dankook University, Gyeonggido, 448-160, Korea;(3) Department of Data Science, Institute of Statistical Information, Inje University, Kyungnam, 621-749, Korea
Abstract:Quantile regression provides a more complete statistical analysis of the stochastic relationships among random variables. Sometimes quantile regression functions estimated at different orders can cross each other. We propose a new non-crossing quantile regression method using doubly penalized kernel machine (DPKM) which uses heteroscedastic location-scale model as basic model and estimates both location and scale functions simultaneously by kernel machines. The DPKM provides the satisfying solution to estimating non-crossing quantile regression functions when multiple quantiles for high-dimensional data are needed. We also present the model selection method that employs cross validation techniques for choosing the parameters which affect the performance of the DPKM. One real example and two synthetic examples are provided to show the usefulness of the DPKM.
Keywords:Crossing  Doubly penalized kernel machine  Location-scale model  Model selection  Quantile regression  SVM
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号