首页 | 本学科首页   官方微博 | 高级检索  
     


Ion imaging study of NO3 radical photodissociation dynamics: characterization of multiple reaction pathways
Authors:Grubb Michael P  Warter Michelle L  Johnson Kurt M  North Simon W
Affiliation:Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States.
Abstract:The photodissociation of NO(3) has been studied using velocity map ion imaging. Measurements of the NO(2) + O channel reveal statistical branching ratios of the O((3)P(J)) fine-structure states, isotropic angular distributions, and low product translational energy consistent with barrierless dissociation along the ground state potential surface. There is clear evidence for two distinct pathways to the formation of NO + O(2) products. The dominant pathway (>70% yield) is characterized by vibrationally excited O(2)((3)Σ(g)(-), v = 5-10) and rotationally cold NO((2)Π), while the second pathway is characterized by O(2)((3)Σ(g)(-), v = 0-4) and rotationally hotter NO((2)Π) fragments. We speculate the first pathway has many similarities to the "roaming" dynamics recently implicated in several systems. The rotational angular momentum of the molecular fragments is positively correlated for this channel, suggesting geometric constraints in the dissociation. The second pathway results in almost exclusive formation of NO((2)Π, v = 0). Although product state correlations support dissociation via an as yet unidentified three-center transition state, theoretical confirmation is needed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号