首页 | 本学科首页   官方微博 | 高级检索  
     


The radical mechanism of cobalt(II) porphyrin-catalyzed olefin aziridination and the importance of cooperative H-bonding
Authors:Suarez Alma I Olivos  Jiang Huiling  Zhang X Peter  de Bruin Bas
Affiliation:Homogeneous and Supramolecular Catalysis group, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam.
Abstract:The mechanism of cobalt(II) porphyrin-mediated aziridination of styrene with PhSO(2)N(3) was studied by means of DFT calculations. The computations clearly indicate the involvement of a cobalt 'nitrene radical' intermediate in the Co(II)(por)-catalyzed alkene aziridination. The addition of styrene to this species proceeds in a stepwise fashion via radical addition of the 'nitrene radical'C to the C=C double bond of styrene to form a γ-alkyl radical intermediate D. The thus formed tri-radical species D easily collapses in an almost barrierless ring closure reaction (TS3) to form the aziridine, thereby regenerating the cobalt(II) porphyrin catalyst. The radical addition of the 'nitrene radical'C to the olefin (TS2) proceeds with a comparable barrier as its formation (TS1), thus providing a good explanation for the first order kinetics in both substrates and the catalyst observed experimentally. Formation of C is clearly accelerated by stabilization of C and TS1 via hydrogen bonding between the S=O and N-H units. The computed radical-type mechanism agrees well with all available mechanistic and kinetic information. The computed free energy profile readily explains the superior performance of the Co(II)(porAmide) system with H-bond donor functionalities over the non-functionalized Co(TPP).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号