首页 | 本学科首页   官方微博 | 高级检索  
     

声源分布和超声频率对清洗声场均匀性的优化*
引用本文:单鸣雷,杨云楼,朱益鹏,姚澄,朱昌平,向 衍,盛金保. 声源分布和超声频率对清洗声场均匀性的优化*[J]. 应用声学, 2018, 37(4): 475-480
作者姓名:单鸣雷  杨云楼  朱益鹏  姚澄  朱昌平  向 衍  盛金保
作者单位:河海大学常州市传感网与环境感知重点实验室并江苏省输配电装备技术重点实验室 常州 #$NL 江苏省“世界水谷”与水生态文明协同创新中心 南京,河海大学常州市传感网与环境感知重点实验室并江苏省输配电装备技术重点实验室 常州 #$NL 江苏省“世界水谷”与水生态文明协同创新中心 南京;河海大学常州市传感网与环境感知重点实验室并江苏省输配电装备技术重点实验室 常州 #$NL 江苏省“世界水谷”与水生态文明协同创新中心 南京;河海大学常州市传感网与环境感知重点实验室并江苏省输配电装备技术重点实验室 常州 #$NL 江苏省“世界水谷”与水生态文明协同创新中心 南京,河海大学常州市传感网与环境感知重点实验室并江苏省输配电装备技术重点实验室 常州 #$NL 江苏省“世界水谷”与水生态文明协同创新中心 南京;河海大学常州市传感网与环境感知重点实验室并江苏省输配电装备技术重点实验室 常州 #$NL 江苏省“世界水谷”与水生态文明协同创新中心 南京;河海大学常州市传感网与环境感知重点实验室并江苏省输配电装备技术重点实验室 常州 #$NL 江苏省“世界水谷”与水生态文明协同创新中心 南京,河海大学常州市传感网与环境感知重点实验室并江苏省输配电装备技术重点实验室 常州 #$NL 江苏省“世界水谷”与水生态文明协同创新中心 南京;河海大学常州市传感网与环境感知重点实验室并江苏省输配电装备技术重点实验室 常州 #$NL 江苏省“世界水谷”与水生态文明协同创新中心 南京;河海大学常州市传感网与环境感知重点实验室并江苏省输配电装备技术重点实验室 常州 #$NL 江苏省“世界水谷”与水生态文明协同创新中心 南京,河海大学常州市传感网与环境感知重点实验室并江苏省输配电装备技术重点实验室 常州 #$NL 江苏省“世界水谷”与水生态文明协同创新中心 南京;河海大学常州市传感网与环境感知重点实验室并江苏省输配电装备技术重点实验室 常州 #$NL 江苏省“世界水谷”与水生态文明协同创新中心 南京;河海大学常州市传感网与环境感知重点实验室并江苏省输配电装备技术重点实验室 常州 #$NL 江苏省“世界水谷”与水生态文明协同创新中心 南京,南京水利科学研究院大坝安全与管理研究,南京水利科学研究院大坝安全与管理研究
基金项目:国家重点研发计划项目 (2016YFC0401606), 江苏省重点研发计划项目 (BE2016056), 中央高校业务经费项目 (2017B17814), 中央级 公益性科研院所基本科研业务费专项资金重点项目 (Y716019)
摘    要:驻波和换能器指向性等影响声场均匀性,造成清洗死角,影响清洗效果。采用COMSOL仿真软件建立了单个换能器位于底部的三维模型,通过染色法实验结果验证模型的有效性。研究了换能器同时位于底部和侧面、多排换能器位于底部时的声场,用声压幅值相对标准差来量化均匀性,发现该两种换能器分布方式能够有效优化声场均匀性。通过调节频率研究频率对声场的影响,进一步优化声场均匀性。对声源分布的确定、频率的选择以满足声场均匀化需求有指导意义。

关 键 词:超声清洗  声场分布  均匀性优化  声源分布  三维建模
收稿时间:2017-06-28
修稿时间:2018-06-25

Optimization of clean sound field uniformity by sound source distribution and ultrasonic frequency pairs
SHAN Minglei,YANG Yunlou,ZHU Yipeng,YAO Cheng,ZHU Changping,XIANG Yan and SHENG Jinbao. Optimization of clean sound field uniformity by sound source distribution and ultrasonic frequency pairs[J]. Applied Acoustics(China), 2018, 37(4): 475-480
Authors:SHAN Minglei  YANG Yunlou  ZHU Yipeng  YAO Cheng  ZHU Changping  XIANG Yan  SHENG Jinbao
Affiliation:Changzhou Key Laboratory of Sensor Networks and Environmental Sensing,Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology,Hohai University,Jiangsu Provincial Collaborative Innovation Center of World Water Valley and Water Ecological Civilization;Changzhou Key Laboratory of Sensor Networks and Environmental Sensing,Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology,Hohai University;Changzhou Key Laboratory of Sensor Networks and Environmental Sensing,Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology,Hohai University;Changzhou Key Laboratory of Sensor Networks and Environmental Sensing,Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology,Hohai University,Jiangsu Provincial Collaborative Innovation Center of World Water Valley and Water Ecological Civilization;Changzhou Key Laboratory of Sensor Networks and Environmental Sensing,Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology,Hohai University;Changzhou Key Laboratory of Sensor Networks and Environmental Sensing,Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology,Hohai University;Changzhou Key Laboratory of Sensor Networks and Environmental Sensing,Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology,Hohai University,Jiangsu Provincial Collaborative Innovation Center of World Water Valley and Water Ecological Civilization;Changzhou Key Laboratory of Sensor Networks and Environmental Sensing,Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology,Hohai University;Changzhou Key Laboratory of Sensor Networks and Environmental Sensing,Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology,Hohai University;Changzhou Key Laboratory of Sensor Networks and Environmental Sensing,Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology,Hohai University,Jiangsu Provincial Collaborative Innovation Center of World Water Valley and Water Ecological Civilization;Changzhou Key Laboratory of Sensor Networks and Environmental Sensing,Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology,Hohai University;Changzhou Key Laboratory of Sensor Networks and Environmental Sensing,Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology,Hohai University;Changzhou Key Laboratory of Sensor Networks and Environmental Sensing,Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology,Hohai University,Jiangsu Provincial Collaborative Innovation Center of World Water Valley and Water Ecological Civilization and Jiangsu Provincial Collaborative Innovation Center of World Water Valley and Water Ecological Civilization
Abstract:The Sound field uniformity is affected by standing wave and transducer directivity, which lead to cleaning dead ends and affecting the cleaning effect. A three-dimensional model is established by COMSOL simulation software with a single transducer at the bottom. The validity of the model is verified by the experimental results. The paper mainly studies the sound field distribution uniformity in two cases. One is the transducers place at the bottom and the side meanwhile. Another one is the multi-row transducers place at the bottom. The relative standard deviation of the amplitude of the sound pressure is used to quantify the uniformity. It is found that the two distributions manners can both effectively optimize the sound field uniformity. Sound field uniformity is further optimized by adjusting the frequency of ultrasonic. It is of guiding significance to determine the distribution of sound source and select frequency to meet the demand of homogenization of sound field.
Keywords:Ultrasonic cleaning   Sound field distribution   Uniformity optimization   Sound source distribution   3D modeling
点击此处可从《应用声学》浏览原始摘要信息
点击此处可从《应用声学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号