首页 | 本学科首页   官方微博 | 高级检索  
     

小波包节点分段阈值降噪在水声监听中的应用*
引用本文:赵杰,杨英,惠力,王志,初士博,刘茂科. 小波包节点分段阈值降噪在水声监听中的应用*[J]. 应用声学, 2019, 38(6): 1015-1024
作者姓名:赵杰  杨英  惠力  王志  初士博  刘茂科
作者单位:齐鲁工业大学山东省科学院,齐鲁工业大学山东省科学院,齐鲁工业大学山东省科学院,齐鲁工业大学山东省科学院,齐鲁工业大学山东省科学院,齐鲁工业大学山东省科学院
摘    要:水声目标信号在发送、传播过程中,易受到环境噪声、系统自噪声等影响,因此水声监听过程中目标信号会掺杂大量噪声信息。为提高获取目标信号的准确性和可靠性,降低噪声,在已有小波分析基础上,提出小波包节点相对能量判断最优分解层,最优分解层节点系数分段阈值处理重构方法,实现水声监听信号分频段去噪。将0.1 kHz~8.4 k Hz实验数据按节点频率排序划分为5个强弱不同的频段信号实现消噪提取,结果表明该方法可将噪声信号与目标信号有效分离,与全局单一阈值相比,具有较好降噪能力。该方法打破了小波阈值去噪高频处理的局限性,提高了识别精度,改善了全局单一阈值去噪存在的短板,在鱼类分析识别、舰船监听、深海探测等方面具有一定的推广和应用价值。

关 键 词:小波包分析  最优分解层  水声监听信号  分段阈值去噪
收稿时间:2019-01-16
修稿时间:2019-10-29

Wavelet packet node segmental threshold denoising for underwater acoustic monitoring
Zhao jie,Yang ying,Hui li,Wang zhi,Chu shibo and Liu maoke. Wavelet packet node segmental threshold denoising for underwater acoustic monitoring[J]. Applied Acoustics(China), 2019, 38(6): 1015-1024
Authors:Zhao jie  Yang ying  Hui li  Wang zhi  Chu shibo  Liu maoke
Affiliation:Institute of 0ceanographic Instrmentation,Qilu University of Technology Shandong Academy of Sciences,Shandong Provincial Key Laboratory of Ocean Enviromental Monitoring Techno1ogy,National Engineering and Technological Research Center of Marine Monitoring Equipment,Institute of 0ceanographic Instrmentation,Qilu University of Technology Shandong Academy of Sciences,Shandong Provincial Key Laboratory of Ocean Enviromental Monitoring Techno1ogy,National Engineering and Technological Research Center of Marine Monitoring Equipment,Institute of 0ceanographic Instrmentation,Qilu University of Technology Shandong Academy of Sciences,Shandong Provincial Key Laboratory of Ocean Enviromental Monitoring Techno1ogy,National Engineering and Technological Research Center of Marine Monitoring Equipment,Institute of 0ceanographic Instrmentation,Qilu University of Technology Shandong Academy of Sciences,Shandong Provincial Key Laboratory of Ocean Enviromental Monitoring Techno1ogy,National Engineering and Technological Research Center of Marine Monitoring Equipment,Institute of 0ceanographic Instrmentation,Qilu University of Technology Shandong Academy of Sciences,Shandong Provincial Key Laboratory of Ocean Enviromental Monitoring Techno1ogy,National Engineering and Technological Research Center of Marine Monitoring Equipment,Institute of 0ceanographic Instrmentation,Qilu University of Technology Shandong Academy of Sciences,Shandong Provincial Key Laboratory of Ocean Enviromental Monitoring Techno1ogy,National Engineering and Technological Research Center of Marine Monitoring Equipment
Abstract:Underwater acoustic signal is easily affected by environmental noise and self-noise of electronic circuit system and so on, which will make the actual data contain a large number of noise signals in the process of transmitting,receiving and processing.In order to ensure the accuracy of underwater acoustic signal and the reliability of subsequent inversion work, the wavelet packet node relative energy for judging optimal decomposition layer and node coefficient multi-segment threshold processing reconstruction method is proposed for underwater acoustic signal denoising,which is based on the existing wavelet analysis.This method,which can increase the recognition accuracy ,breaks the imitation of wavelet threshold denoising processing in the high frequency, meanwhile improves the short-board of global single threshold denoising.The experimental results show that the optimal decomposition layer obtained by this method is reliable. Node segmentation threshold processing in the optimal decomposition layer can effectively separate the noise band signal from the target signal band.Compared with other wavelet methods, it has better separation and de-noising ability in underwater acoustic signal processing in the range of 100-50000 Hz.
Keywords:Wavelet packet analysis  Optimal decomposition layer   Underwater acoustic monitoring signal   multi-segment threshold
本文献已被 CNKI 等数据库收录!
点击此处可从《应用声学》浏览原始摘要信息
点击此处可从《应用声学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号