首页 | 本学科首页   官方微博 | 高级检索  
     


Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1: a comparative study from Monte Carlo simulation
Authors:Babarao Ravichandar  Hu Zhongqiao  Jiang Jianwen  Chempath Shaji  Sandler Stanley I
Affiliation:Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576.
Abstract:Storage of pure CO2 and CH4 and separation of their binary mixture in three different classes of nanostructured adsorbents--silicalite, C168 schwarzite, and IRMOF-1--have been compared at room temperature using atomistic simulation. CH4 is represented as a spherical Lennard-Jones molecule, and CO2 is represented as a rigid linear molecule with a quadrupole moment. For pure component adsorption, CO2 is preferentially adsorbed than CH4 in all the three adsorbents over the pressure range under this study, except in C168 schwarzite at high pressures. The simulated adsorption isotherms and isosteric heats match closely with available experimental data. A dual-site Langmuir-Freundlich equation is used to fit the isotherms satisfactorily. Compared to silicalite and C168 schwarzite, the gravimetric adsorption capacity of pure CH4 and CO2 separately in IRMOF-1 is substantially larger. This implies that IRMOF-1 might be a potential storage medium for CH4 and CO2. For adsorption from an equimolar binary mixture, CO2 is preferentially adsorbed in all three adsorbents. Predictions of mixture adsorption with the ideal-adsorbed solution theory on the basis of only pure component adsorption agree well with simulation results. Though IRMOF-1 has a significantly higher adsorption capacity than silicalite and C168 schwarzite, the adsorption selectivity of CO2 over CH4 is found to be similar in all three adsorbents.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号